Solutions to Problem 1.

a. State space: $M = \{0, 1, 2, \dots\} \leftarrow$ number of customers in the hair salon

Arrival rates,
$$
\lambda_i = \begin{cases} 5 & \text{if } i = 0, 1, 2, 3 \\ 0 & \text{if } i = 4, 5, ... \end{cases}
$$
 Service rates, $\mu_i = 6 + (i - 1)4$ for $i = 1, 2, ...$

Note that the system will never reach states 5, 6, 7, ..., so the service rates μ_5 , μ_6 , μ_7 , ... are not relevant.

b. First, determine steady-state probabilities:

$$
d_0 = 1
$$

\n
$$
d_1 = \frac{\lambda_0}{\mu_1} = \frac{5}{6}
$$

\n
$$
d_2 = \frac{\lambda_0 \lambda_1}{\mu_1 \mu_2} = \frac{5}{6} \left(\frac{5}{10}\right) = \frac{5}{12}
$$

\n
$$
d_3 = \frac{\lambda_0 \lambda_1 \lambda_2}{\mu_1 \mu_2 \mu_3} = \frac{5}{12} \left(\frac{5}{14}\right) = \frac{25}{168}
$$

\n
$$
d_4 = \frac{\lambda_0 \lambda_1 \lambda_2 \lambda_3}{\mu_1 \mu_2 \mu_3 \mu_4} = \frac{25}{168} \left(\frac{5}{18}\right) = \frac{125}{3024}
$$

\n
$$
d_5 = d_6 = \dots = 0
$$

Let
$$
D = \sum_{j=0}^{\infty} d_j \approx 2.44
$$

\n $\pi_0 = \frac{d_0}{D} \approx 0.41$, $\pi_1 = \frac{d_1}{D} \approx 0.34$,
\n $\pi_2 = \frac{d_2}{D} \approx 0.17$, $\pi_3 = \frac{d_3}{D} \approx 0.06$,
\n $\pi_4 = \frac{d_4}{D} \approx 0.02$, $\pi_5 = \pi_6 = \cdots = 0$

Expected number of customers in salon:

$$
\ell = \sum_{j=0}^{\infty} j\pi_j \approx 0(0.41) + 1(0.34) + 2(0.17) + 3(0.06) + 4(0.02) = 0.94
$$
 customers

c. Effective arrival rate:

$$
\lambda_{\text{eff}} = \sum_{j=0}^{\infty} \lambda_j \pi_j = 4.9 \text{ customers/hour}
$$

By Little's law: expected waiting time (includes customers who reneged):

$$
w = \frac{\ell}{\lambda_{\text{eff}}} = \frac{0.94}{4.9} \approx 0.192 \text{ hours} = 11.51 \text{ minutes}
$$

Solutions to Problem 2.

a. M/M/5 queue with arrival rate $\lambda = 6$ pairs/hour and service rate $\mu = \frac{3}{2}$ $\frac{3}{2}$ pairs/hour (based on an average court use rate of 40 minutes or 2/3 hour).

b.

$$
\rho = \frac{\lambda}{s\mu} = \frac{6}{5\left(\frac{3}{2}\right)} = \frac{12}{15} = \frac{4}{5} =
$$

$$
\pi_0 = \left[\sum_{j=0}^{5} \frac{4^j}{j!} + \frac{5^5\left(\frac{4}{5}\right)^6}{5! \left(\frac{1}{5}\right)}\right]^{-1} = \frac{1}{77} \approx 0.0130
$$

c.

$$
\pi_5 = \frac{\left(\frac{6}{3/2}\right)^5}{5!} (0.0130) \approx 0.1109
$$

$$
\ell_q = \frac{\pi_5 \rho}{(1-\rho)^2} \approx \frac{(0.1109)(\frac{4}{5})}{(1-\frac{4}{5})^2} \approx 2.22 \text{ pairs}
$$

Note that if you use $\pi_0 \approx 0.01$ instead, you will get very different answers: $\pi_5 \approx 0.0853$ and $\ell_q \approx 1.71$.

d.

$$
w_q = \frac{\ell_q}{\lambda} = \frac{2.22}{6} \approx 0.37 \text{ hours} = 22 \text{ minutes}
$$

e. Now we model the system as an M/G/5 queue with a service time that is Uniform $\left[\frac{3}{6}\right]$ $\frac{3}{6}, \frac{5}{6}$ $\frac{5}{6}$]. We can use Whitt's approximation

$$
\hat{w_q}=\left(\frac{\epsilon_a+\epsilon_s}{2}\right)w_q
$$

together with the result from part d, since the mean service rate remains the same:

 ε_a = 1, since the interarrival times are still exponentially distributed $\varepsilon_s = \frac{\text{Var}(X)}{E[X]^2}$ $\frac{\text{Var}(X)}{E[X]^2}$, where *X* ∼ Uniform $\left[\frac{3}{6}\right]$ $\frac{3}{6}, \frac{5}{6}$ $\frac{1}{6}$ = 1 $\frac{1}{12} \left(\frac{5}{6} \right)$ $\frac{5}{6} - \frac{3}{6}$ $\frac{3}{6}$)² $\frac{4}{6}$ $\frac{67}{6^6}$ = 1 $\overline{48}$

Therefore,

$$
\hat{w}_q = \frac{1 + \frac{1}{48}}{2} w_q = \frac{49}{96} w_q \approx 0.19
$$
 hours = 11.4 minutes

Solutions to Problem [3.](#page-0-0)

Model as an M/M/ ∞ queue with arrival rate $\lambda = 12$ and service rate $\mu = 4$.

Let L = a random variable representing the number of call in the system in steady-state. Since this is an M/M/ ∞ queue, L is a Poisson random variable with parameter $\frac{\lambda}{\mu}$ $\frac{\lambda}{u} = 3.$

We want to find the smallest value of c^* such that $Pr\{L \le c^*\} \ge 0.99$, or equivalently:

$$
\sum_{j=0}^{c^*} \frac{e^{-3}(3)^j}{j!} \ge 0.99
$$

By trial-and-error (starting with $c^* = 1$ and increasing c^* by 1 until the above expression is true), we find that $c^* = 8$.